关于python做过的比较好玩的事
这段时间学了python,对于python这种优雅简洁的语言深深吸引,在网上看到一个github上的开源项目,觉得比较有意思,就自己研究一番,现将结果记录下来,以志自己这一路学习走来的历程。
因为python初学者对于python的环境安装的学习比较陡峭,所以安装了Anaconda3 这一集成环境软件。
这个项目能够通过算法将一些世界名画的风格应用到自己的照片。
第一步
安装环境依赖 keras h5py tensorflow
第二步
配置运行环境
下载VGG16模型 放入如下目录当中
C:\Users\Administrator\.keras\models 如果没有可以创建
第三步
# -*- coding: utf-8 -*-
""" Spyder EditorThis is a temporary script file.
"""from __future__ import print_function
from keras.preprocessing.image import load_img, img_to_array from scipy.misc import imsave import numpy as np from scipy.optimize import fmin_l_bfgs_b import time import argparsefrom keras.applications import vgg16
from keras import backend as K parser = argparse.ArgumentParser(description='Neural style transfer with Keras.') parser.add_argument('base_image_path', metavar='base', type=str, help='Path to the image to transform.') parser.add_argument('style_reference_image_path', metavar='ref', type=str, help='Path to the style reference image.') parser.add_argument('result_prefix', metavar='res_prefix', type=str, help='Prefix for the saved results.') parser.add_argument('--iter', type=int, default=20, required=False, # 此处为设置迭代次数 help='Number of iterations to run.') parser.add_argument('--content_weight', type=float, default=0.025, required=False, help='Content weight.') parser.add_argument('--style_weight', type=float, default=1.0, required=False, help='Style weight.') parser.add_argument('--tv_weight', type=float, default=1.0, required=False, help='Total Variation weight.')args = parser.parse_args()
base_image_path = args.base_image_pathprint('base_image_path',base_image_path)
style_reference_image_path = args.style_reference_image_path
print('style_reference_image_path',style_reference_image_path)
result_prefix = args.result_prefix
print('result_prefix',result_prefix)
iterations = args.iter
print('iter',iterations)
# these are the weights of the different loss components
total_variation_weight = args.tv_weightprint('tv_weight',total_variation_weight)
style_weight = args.style_weight
print('style_weight',style_weight)
content_weight = args.content_weight
print('content_weight',content_weight)
# dimensions of the generated picture.
width, height = load_img(base_image_path).sizeprint('width : %s,height : %s' %(width,height) )
img_nrows = 400
print('img_nrows',img_nrows)
img_ncols = int(width * img_nrows / height)
print('img_ncols',img_ncols)
# util function to open, resize and format pictures into appropriate tensors
def preprocess_image(image_path): img = load_img(image_path, target_size=(img_nrows, img_ncols)) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = vgg16.preprocess_input(img) return img# util function to convert a tensor into a valid image
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x# get tensor representations of our images
base_image = K.variable(preprocess_image(base_image_path)) style_reference_image = K.variable(preprocess_image(style_reference_image_path))# this will contain our generated image
if K.image_data_format() == 'channels_first': combination_image = K.placeholder((1, 3, img_nrows, img_ncols)) else: combination_image = K.placeholder((1, img_nrows, img_ncols, 3))# combine the 3 images into a single Keras tensor
input_tensor = K.concatenate([base_image, style_reference_image, combination_image], axis=0)# build the VGG16 network with our 3 images as input
# the model will be loaded with pre-trained ImageNet weights model = vgg16.VGG16(input_tensor=input_tensor, weights='imagenet', include_top=False) print('Model loaded.')# get the symbolic outputs of each "key" layer (we gave them unique names).
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])# compute the neural style loss
# first we need to define 4 util functions# the gram matrix of an image tensor (feature-wise outer product)
def gram_matrix(x): assert K.ndim(x) == 3 if K.image_data_format() == 'channels_first': features = K.batch_flatten(x) else: features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1))) gram = K.dot(features, K.transpose(features)) return gram# the "style loss" is designed to maintain
# the style of the reference image in the generated image. # It is based on the gram matrices (which capture style) of # feature maps from the style reference image # and from the generated image def style_loss(style, combination): assert K.ndim(style) == 3 assert K.ndim(combination) == 3 S = gram_matrix(style) C = gram_matrix(combination) channels = 3 size = img_nrows * img_ncols return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2))# an auxiliary loss function
# designed to maintain the "content" of the # base image in the generated image def content_loss(base, combination): return K.sum(K.square(combination - base))# the 3rd loss function, total variation loss,
# designed to keep the generated image locally coherent def total_variation_loss(x): assert K.ndim(x) == 4 if K.image_data_format() == 'channels_first': a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, 1:, :img_ncols - 1]) b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, :img_nrows - 1, 1:]) else: a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :]) b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :]) return K.sum(K.pow(a + b, 1.25))# combine these loss functions into a single scalar
loss = K.variable(0.) layer_features = outputs_dict['block4_conv2'] base_image_features = layer_features[0, :, :, :] combination_features = layer_features[2, :, :, :] loss += content_weight * content_loss(base_image_features, combination_features)feature_layers = ['block1_conv1', 'block2_conv1',
'block3_conv1', 'block4_conv1', 'block5_conv1'] for layer_name in feature_layers: layer_features = outputs_dict[layer_name] style_reference_features = layer_features[1, :, :, :] combination_features = layer_features[2, :, :, :] sl = style_loss(style_reference_features, combination_features) loss += (style_weight / len(feature_layers)) * sl loss += total_variation_weight * total_variation_loss(combination_image)# get the gradients of the generated image wrt the loss
grads = K.gradients(loss, combination_image)outputs = [loss]
if isinstance(grads, (list, tuple)): outputs += grads else: outputs.append(grads)f_outputs = K.function([combination_image], outputs)
def eval_loss_and_grads(x): if K.image_data_format() == 'channels_first': x = x.reshape((1, 3, img_nrows, img_ncols)) else: x = x.reshape((1, img_nrows, img_ncols, 3)) outs = f_outputs([x]) loss_value = outs[0] if len(outs[1:]) == 1: grad_values = outs[1].flatten().astype('float64') else: grad_values = np.array(outs[1:]).flatten().astype('float64') return loss_value, grad_values# this Evaluator class makes it possible
# to compute loss and gradients in one pass # while retrieving them via two separate functions, # "loss" and "grads". This is done because scipy.optimize # requires separate functions for loss and gradients, # but computing them separately would be inefficient. class Evaluator(object):def __init__(self):
self.loss_value = None self.grads_values = Nonedef loss(self, x):
assert self.loss_value is None loss_value, grad_values = eval_loss_and_grads(x) self.loss_value = loss_value self.grad_values = grad_values return self.loss_valuedef grads(self, x):
assert self.loss_value is not None grad_values = np.copy(self.grad_values) self.loss_value = None self.grad_values = None return grad_valuesevaluator = Evaluator()
# run scipy-based optimization (L-BFGS) over the pixels of the generated image
# so as to minimize the neural style loss if K.image_data_format() == 'channels_first': x = np.random.uniform(0, 255, (1, 3, img_nrows, img_ncols)) - 128. else: x = np.random.uniform(0, 255, (1, img_nrows, img_ncols, 3)) - 128.for i in range(iterations):
print('Start of iteration', i) start_time = time.time() x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20) print('Current loss value:', min_val) # save current generated image img = deprocess_image(x.copy()) fname = result_prefix + '_at_iteration_%d.png' % i imsave(fname, img) end_time = time.time() print('Image saved as', fname) print('Iteration %d completed in %ds' % (i, end_time - start_time))第四步
将该py文件放到一个文件夹中,也将模板图片放到该文件夹中 ,将需要转换的照片也放到该文件夹中,
启动 Anaconda Prompt 进入到该文件夹中,执行
python py文件名.py 需要转换的照片 模板图片 生成的图片(生成的图片不需要加后缀)
python style.py ./yxc.jpg ./style.jpg ./yxc_style
模板图片