博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
python对于图片的风格的处理--引用github上开源项目的
阅读量:5990 次
发布时间:2019-06-20

本文共 8854 字,大约阅读时间需要 29 分钟。

hot3.png

                                               关于python做过的比较好玩的事

这段时间学了python,对于python这种优雅简洁的语言深深吸引,在网上看到一个github上的开源项目,觉得比较有意思,就自己研究一番,现将结果记录下来,以志自己这一路学习走来的历程。

因为python初学者对于python的环境安装的学习比较陡峭,所以安装了Anaconda3 这一集成环境软件。

这个项目能够通过算法将一些世界名画的风格应用到自己的照片。

第一步

安装环境依赖  keras   h5py   tensorflow

第二步

配置运行环境

下载VGG16模型 放入如下目录当中

C:\Users\Administrator\.keras\models  如果没有可以创建

第三步

# -*- coding: utf-8 -*-

"""
Spyder Editor

This is a temporary script file.

"""

from __future__ import print_function

from keras.preprocessing.image import load_img, img_to_array
from scipy.misc import imsave
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
import time
import argparse

from keras.applications import vgg16

from keras import backend as K

parser = argparse.ArgumentParser(description='Neural style transfer with Keras.')
parser.add_argument('base_image_path', metavar='base', type=str,
                    help='Path to the image to transform.')
parser.add_argument('style_reference_image_path', metavar='ref', type=str,
                    help='Path to the style reference image.')
parser.add_argument('result_prefix', metavar='res_prefix', type=str,
                    help='Prefix for the saved results.')
parser.add_argument('--iter', type=int, default=20, required=False,      # 此处为设置迭代次数
                    help='Number of iterations to run.')
parser.add_argument('--content_weight', type=float, default=0.025, required=False,
                    help='Content weight.')
parser.add_argument('--style_weight', type=float, default=1.0, required=False,
                    help='Style weight.')
parser.add_argument('--tv_weight', type=float, default=1.0, required=False,
                    help='Total Variation weight.')

args = parser.parse_args()

base_image_path = args.base_image_path

print('base_image_path',base_image_path)

style_reference_image_path = args.style_reference_image_path

print('style_reference_image_path',style_reference_image_path)

result_prefix = args.result_prefix

print('result_prefix',result_prefix)

iterations = args.iter

print('iter',iterations)

# these are the weights of the different loss components

total_variation_weight = args.tv_weight

print('tv_weight',total_variation_weight)

style_weight = args.style_weight

print('style_weight',style_weight)

content_weight = args.content_weight

print('content_weight',content_weight)

# dimensions of the generated picture.

width, height = load_img(base_image_path).size

print('width : %s,height : %s' %(width,height) )

img_nrows = 400

print('img_nrows',img_nrows)

img_ncols = int(width * img_nrows / height)

print('img_ncols',img_ncols)

# util function to open, resize and format pictures into appropriate tensors

def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_nrows, img_ncols))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img

# util function to convert a tensor into a valid image

def deprocess_image(x):
    if K.image_data_format() == 'channels_first':
        x = x.reshape((3, img_nrows, img_ncols))
        x = x.transpose((1, 2, 0))
    else:
        x = x.reshape((img_nrows, img_ncols, 3))
    # Remove zero-center by mean pixel
    x[:, :, 0] += 103.939
    x[:, :, 1] += 116.779
    x[:, :, 2] += 123.68
    # 'BGR'->'RGB'
    x = x[:, :, ::-1]
    x = np.clip(x, 0, 255).astype('uint8')
    return x

# get tensor representations of our images

base_image = K.variable(preprocess_image(base_image_path))
style_reference_image = K.variable(preprocess_image(style_reference_image_path))

# this will contain our generated image

if K.image_data_format() == 'channels_first':
    combination_image = K.placeholder((1, 3, img_nrows, img_ncols))
else:
    combination_image = K.placeholder((1, img_nrows, img_ncols, 3))

# combine the 3 images into a single Keras tensor

input_tensor = K.concatenate([base_image,
                              style_reference_image,
                              combination_image], axis=0)

# build the VGG16 network with our 3 images as input

# the model will be loaded with pre-trained ImageNet weights
model = vgg16.VGG16(input_tensor=input_tensor,
                    weights='imagenet', include_top=False)
print('Model loaded.')

# get the symbolic outputs of each "key" layer (we gave them unique names).

outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])

# compute the neural style loss

# first we need to define 4 util functions

# the gram matrix of an image tensor (feature-wise outer product)

def gram_matrix(x):
    assert K.ndim(x) == 3
    if K.image_data_format() == 'channels_first':
        features = K.batch_flatten(x)
    else:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    gram = K.dot(features, K.transpose(features))
    return gram

# the "style loss" is designed to maintain

# the style of the reference image in the generated image.
# It is based on the gram matrices (which capture style) of
# feature maps from the style reference image
# and from the generated image

def style_loss(style, combination):
    assert K.ndim(style) == 3
    assert K.ndim(combination) == 3
    S = gram_matrix(style)
    C = gram_matrix(combination)
    channels = 3
    size = img_nrows * img_ncols
    return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2))

# an auxiliary loss function

# designed to maintain the "content" of the
# base image in the generated image

def content_loss(base, combination):
    return K.sum(K.square(combination - base))

# the 3rd loss function, total variation loss,

# designed to keep the generated image locally coherent

def total_variation_loss(x):
    assert K.ndim(x) == 4
    if K.image_data_format() == 'channels_first':
        a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, 1:, :img_ncols - 1])
        b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, :img_nrows - 1, 1:])
    else:
        a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :])
        b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :])
    return K.sum(K.pow(a + b, 1.25))

# combine these loss functions into a single scalar

loss = K.variable(0.)
layer_features = outputs_dict['block4_conv2']
base_image_features = layer_features[0, :, :, :]
combination_features = layer_features[2, :, :, :]
loss += content_weight * content_loss(base_image_features,
                                      combination_features)

feature_layers = ['block1_conv1', 'block2_conv1',

                  'block3_conv1', 'block4_conv1',
                  'block5_conv1']
for layer_name in feature_layers:
    layer_features = outputs_dict[layer_name]
    style_reference_features = layer_features[1, :, :, :]
    combination_features = layer_features[2, :, :, :]
    sl = style_loss(style_reference_features, combination_features)
    loss += (style_weight / len(feature_layers)) * sl
loss += total_variation_weight * total_variation_loss(combination_image)

# get the gradients of the generated image wrt the loss

grads = K.gradients(loss, combination_image)

outputs = [loss]

if isinstance(grads, (list, tuple)):
    outputs += grads
else:
    outputs.append(grads)

f_outputs = K.function([combination_image], outputs)

def eval_loss_and_grads(x):
    if K.image_data_format() == 'channels_first':
        x = x.reshape((1, 3, img_nrows, img_ncols))
    else:
        x = x.reshape((1, img_nrows, img_ncols, 3))
    outs = f_outputs([x])
    loss_value = outs[0]
    if len(outs[1:]) == 1:
        grad_values = outs[1].flatten().astype('float64')
    else:
        grad_values = np.array(outs[1:]).flatten().astype('float64')
    return loss_value, grad_values

# this Evaluator class makes it possible

# to compute loss and gradients in one pass
# while retrieving them via two separate functions,
# "loss" and "grads". This is done because scipy.optimize
# requires separate functions for loss and gradients,
# but computing them separately would be inefficient.

class Evaluator(object):

    def __init__(self):

        self.loss_value = None
        self.grads_values = None

    def loss(self, x):

        assert self.loss_value is None
        loss_value, grad_values = eval_loss_and_grads(x)
        self.loss_value = loss_value
        self.grad_values = grad_values
        return self.loss_value

    def grads(self, x):

        assert self.loss_value is not None
        grad_values = np.copy(self.grad_values)
        self.loss_value = None
        self.grad_values = None
        return grad_values

evaluator = Evaluator()

# run scipy-based optimization (L-BFGS) over the pixels of the generated image

# so as to minimize the neural style loss
if K.image_data_format() == 'channels_first':
    x = np.random.uniform(0, 255, (1, 3, img_nrows, img_ncols)) - 128.
else:
    x = np.random.uniform(0, 255, (1, img_nrows, img_ncols, 3)) - 128.

for i in range(iterations):

    print('Start of iteration', i)
    start_time = time.time()
    x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(),
                                     fprime=evaluator.grads, maxfun=20)
    print('Current loss value:', min_val)
    # save current generated image
    img = deprocess_image(x.copy())
    fname = result_prefix + '_at_iteration_%d.png' % i
    imsave(fname, img)
    end_time = time.time()
    print('Image saved as', fname)
print('Iteration %d completed in %ds' % (i, end_time - start_time))

第四步

将该py文件放到一个文件夹中,也将模板图片放到该文件夹中 ,将需要转换的照片也放到该文件夹中,

启动 Anaconda  Prompt 进入到该文件夹中,执行 

python   py文件名.py      需要转换的照片      模板图片    生成的图片(生成的图片不需要加后缀)

python    style.py     ./yxc.jpg      ./style.jpg       ./yxc_style   

 

模板图片

 

转载于:https://my.oschina.net/u/3689521/blog/1560837

你可能感兴趣的文章
Chrome开始支持虚拟现实,以后可以摇头晃脑刷网页了
查看>>
将平板电脑用于工作合适吗?安全问题怎么解决?
查看>>
HTML5游戏四大待解决现状 给HTML5游戏从业者的3个建议
查看>>
致敬赵雷:基于TensorFlow让机器生成赵雷曲风的歌词
查看>>
领英发布最具吸引力公司榜单 科技企业独占前七名
查看>>
诺基亚如何帮助印度巴蒂电信和BSNL进行5G网络转型
查看>>
《算法设计编程实验:大学程序设计课程与竞赛训练教材》——2.2 筛选法模拟的实验范例...
查看>>
神经网络算法Batch Normalization的分析与展望 | 大牛讲堂
查看>>
防护升级 让你的网站拥有HTTPS加密传输
查看>>
我国IDC/ISP持证企业发展情况:共4065家 地区发展不均衡
查看>>
D1net阅闻:2015数据中心宕机20%是由DDoS攻击引起
查看>>
【智驾深谈】George Hotz,桀骜不逊的自动驾驶破局者
查看>>
《 嵌入式系统设计与实践》一一1.3 延伸阅读
查看>>
暴涨暴跌 超讯通信股价坐过山车
查看>>
智能安防已成撬动智能家居大产业的黄金点?
查看>>
瑞典时尚品牌启用全球RFID系统
查看>>
欧盟将扩大免费无线网络服务
查看>>
数据中心的可持续性:相关的标准和文件
查看>>
物联网(IoT)专属网络技术已经起飞!
查看>>
物联网安全问题惹关注
查看>>